28 resultados para 620103 Rice

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organization of transgenes in rice transformed through direct DNA transfer strongly suggests a two-phase integration mechanism. In the “preintegration” phase, transforming plasmid molecules (either intact or partial) are spliced together. This gives rise to rearranged transgenic sequences, which upon integration do not contain any interspersed plant genomic sequences. Subsequently, integration of transgenic DNA into the host genome is initiated. Our experiments suggest that the original site of integration acts as a hot spot, facilitating subsequent integration of successive transgenic molecules at the same locus. The resulting transgenic locus may have plant DNA separating the transgenic sequences. Our data indicate that transformation through direct DNA transfer, specifically particle bombardment, generally results in a single transgenic locus as a result of this two-phase integration mechanism. Transgenic plants generated through such processes may, therefore, be more amenable to breeding programs as the single transgenic locus will be easier to characterize genetically. Results from direct DNA transfer experiments suggest that in the absence of protein factors involved in exogenous DNA transfer through Agrobacterium, the qualitative and/or quantitative efficiency of transformation events is not compromised. Our results cast doubt on the role of Agrobacterium vir genes in the integration process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rice blast fungus, Magnaporthe grisea, generates enormous turgor pressure within a specialized cell called the appressorium to breach the surface of host plant cells. Here, we show that a mitogen-activated protein kinase, Mps1, is essential for appressorium penetration. Mps1 is 85% similar to yeast Slt2 mitogen-activated protein kinase and can rescue the thermosensitive growth of slt2 null mutants. The mps1–1Δ mutants of M. grisea have some phenotypes in common with slt2 mutants of yeast, including sensitivity to cell-wall-digesting enzymes, but display additional phenotypes, including reduced sporulation and fertility. Interestingly, mps1–1Δ mutants are completely nonpathogenic because of the inability of appressoria to penetrate plant cell surfaces, suggesting that penetration requires remodeling of the appressorium wall through an Mps1-dependent signaling pathway. Although mps1–1Δ mutants are unable to cause disease, they are able to trigger early plant-cell defense responses, including the accumulation of autofluorescent compounds and the rearrangement of the actin cytoskeleton. We conclude that MPS1 is essential for pathogen penetration; however, penetration is not required for induction of some plant defense responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The genetic basis of heterosis was investigated in an elite rice hybrid by using a molecular linkage map with 150 segregating loci covering the entire rice genome. Data for yield and three traits that were components of yield were collected over 2 years from replicated field trials of 250 F2:3 families. Genotypic variations explained from about 50% to more than 80% of the total variation. Interactions between genotypes and years were small compared with the main effects. A total of 32 quantitative trait loci (QTLs) were detected for the four traits; 12 were observed in both years and the remaining 20 were detected in only one year. Overdominance was observed for most of the QTLs for yield and also for a few QTLs for the component traits. Correlations between marker heterozygosity and trait expression were low, indicating that the overall heterozygosity made little contribution to heterosis. Digenic interactions, including additive by additive, additive by dominance, and dominance by dominance, were frequent and widespread in this population. The interactions involved large numbers of marker loci, most of which individually were not detectable on single-locus basis; many interactions among loci were detected in both years. The results provide strong evidence that epistasis plays a major role as the genetic basis of heterosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Internodes of deepwater rice are induced to grow rapidly when plants become submerged. This adaptation enables deepwater rice to keep part of its foliage above the rising flood waters during the monsoon season and to avoid drowning. This growth response is, ultimately, elicited by the plant hormone gibberellin (GA). The primary target tissue for GA action is the intercalary meristem of the internode. Using differential display of mRNA, we have isolated a number of genes whose expression in the intercalary meristem is regulated by GA. The product of one of these genes was identified as an ortholog of replication protein A1 (RPA1). RPA is a heterotrimeric protein involved in DNA replication, recombination, and repair and also in regulation of transcription. A chimeric construct, in which the single-stranded DNA-binding domain of rice RPA1 was spliced into the corresponding region of yeast RPA1, was able to complement a yeast rpa1 mutant. The transcript level of rice RPA1 is high in tissues containing dividing cells. RPA1 mRNA levels increase rapidly in the intercalary meristem during submergence and treatment with GA before the increase in the level of histone H3 mRNA, a marker for DNA replication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peptide growth factors were isolated from conditioned medium derived from rice (Oryza sativa L.) suspension cultures and identified to be a sulfated pentapeptide [H-Tyr(SO3H)-Ile-Tyr(SO3H)-Thr-Gln-OH] and its C-terminal-truncated tetrapeptide [H-Tyr(SO3H)-Ile-Tyr(SO3H)-Thr-OH]. These structures were identical to the phytosulfokines originally found in asparagus (Asparagus officinalis L.) mesophyll cultures. The pentapeptide [phytosulfokine-α (PSK-α)] very strongly stimulated colony formation of rice protoplasts at concentrations above 10−8 M, indicating a similar mode of action in rice of phytosulfokines. Binding assays using 35S-labeled PSK-α demonstrated the existence of both high- and low-affinity specific saturable binding sites on the surface of rice cells in suspension. Analysis of [35S]PSK-α binding in differential centrifugation fractions suggested association of the binding with a plasma membrane-enriched fraction. The apparent Kd values for [35S]PSK-α binding were found to be 1 × 10−9 M for the high-affinity type and 1 × 10−7 M for the low-affinity type, with maximal numbers of binding sites of 1 × 104 sites per cell and 1 × 105 sites per cell, respectively. Competition studies with [35S]PSK-α and several synthetic PSK-α analogs demonstrated that only peptides that possesses mitogenic activity can effectively displace the radioligand. These results suggest that a signal transduction pathway mediated by peptide factors is involved in plant cell proliferation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rice genus, Oryza, which comprises 23 species and 9 recognized genome types, represents an enormous gene pool for genetic improvement of rice cultivars. Clarification of phylogenetic relationships of rice genomes is critical for effective utilization of the wild rice germ plasm. By generating and comparing two nuclear gene (Adh1 and Adh2) trees and a chloroplast gene (matK) tree of all rice species, phylogenetic relationships among the rice genomes were inferred. Origins of the allotetraploid species, which constitute more than one-third of rice species diversity, were reconstructed based on the Adh gene phylogenies. Genome types of the maternal parents of allotetraploid species were determined based on the matK gene tree. The phylogenetic reconstruction largely supports the previous recognition of rice genomes. It further revealed that the EE genome species is most closely related to the DD genome progenitor that gave rise to the CCDD genome. Three species of the CCDD genome may have originated through a single hybridization event, and their maternal parent had the CC genome. The BBCC genome species had different origins, and their maternal parents had either a BB or CC genome. An additional genome type, HHKK, was recognized for Oryza schlechteri and Porteresia coarctata, suggesting that P. coarctata is an Oryza species. The AA genome lineage, which contains cultivated rice, is a recently diverged and rapidly radiated lineage within the rice genus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In plants, sugar feedback regulation provides a mechanism for control of carbohydrate allocation and utilization among tissues and organs. The sugar repression of α-amylase gene expression in rice provides an ideal model for studying the mechanism of sugar feedback regulation. We have shown previously that sugar repression of α-amylase gene expression in rice suspension cells involves control of both transcription rate and mRNA stability. The α-amylase mRNA is significantly more stable in sucrose-starved cells than in sucrose-provided cells. To elucidate the mechanism of sugar-dependent mRNA turnover, we have examined the effect of αAmy3 3′ untranslated region (UTR) on mRNA stability by functional analyses in transformed rice suspension cells. We found that the entire αAmy3 3′ UTR and two of its subdomains can independently mediate sugar-dependent repression of reporter mRNA accumulation. Analysis of reporter mRNA half-lives demonstrated that the entire αAmy3 3′ UTR and the two subdomains each functioned as a sugar-dependent destabilizing determinant in the turnover of mRNA. Nuclear run-on transcription analysis further confirmed that the αAmy3 3′ UTR and the two subdomains did not affect the transcription rate of promoter. The identification of sequence elements in the α-amylase mRNA that dictate the differential stability has very important implications for the study of sugar-dependent mRNA decay mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many reports have shown that plant growth and yield is superior on mixtures of NO3− and NH4+ compared with provision of either N source alone. Despite its clear practical importance, the nature of this N-source synergism at the cellular level is poorly understood. In the present study we have used the technique of compartmental analysis by efflux and the radiotracer 13N to measure cellular turnover kinetics, patterns of flux partitioning, and cytosolic pool sizes of both NO3− and NH4+ in seedling roots of rice (Oryza sativa L. cv IR72), supplied simultaneously with the two N sources. We show that plasma membrane fluxes for NH4+, cytosolic NH4+ accumulation, and NH4+ metabolism are enhanced by the presence of NO3−, whereas NO3− fluxes, accumulation, and metabolism are strongly repressed by NH4+. However, net N acquisition and N translocation to the shoot with dual N-source provision are substantially larger than when NO3− or NH4+ is provided alone at identical N concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quantitative analysis with immunogold-electron microscopy using a single-affinity-purified anti-NADH-glutamate synthase (GOGAT) immunoglobulin G (IgG) as the primary antibody showed that the NADH-GOGAT protein was present in various forms of plastids in the cells of the epidermis and exodermis, in the cortex parenchyma, and in the vascular parenchyma of root tips (<10 mm) of rice (Oryza sativa) seedlings supplied with 1 mm NH4+ for 24 h. The values of the mean immunolabeling density of plastids were almost equal among these different cell types in the roots. However, the number of plastids per individual cell type was not identical, and some parts of the cells in the epidermis and exodermis contained large numbers of plastids that were heavily immunolabeled. Although there was an indication of labeling in the mitochondria using the single-affinity-purified anti-NADH-GOGAT IgG, this was not confirmed when a twice-affinity-purified IgG was used, indicating an exclusively plastidial location of the NADH-GOGAT protein in rice roots. These results, together with previous work from our laboratory (K. Ishiyama, T. Hayakawa, and T. Yamaya [1998] Planta 204: 288–294), suggest that the assimilation of exogeneously supplied NH4+ ions is primarily via the cytosolic glutamine synthetase/plastidial NADH-GOGAT cycle in specific regions of the epidermis and exodermis in rice roots. We also discuss the role of the NADH-GOGAT protein in vascular parenchyma cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyclin-dependent protein kinases (CDKs) play key roles in regulating the eukaryotic cell cycle. We have analyzed the expression of four rice (Oryza sativa) CDK genes, cdc2Os1, cdc2Os2, cdc2Os3, and R2, by in situ hybridization of sections of root apices. Transcripts of cdc2Os1, cdc2Os2, and R2 were detected uniformly in the dividing region of the root apex. cdc2Os1 and cdc2Os2 were also expressed in differentiated cells such as those in the sclerenchyma, pericycle, and parenchyma of the central cylinder. By contrast, signals corresponding to transcripts of cdc2Os3 were distributed only in patches in the dividing region. Counterstaining of sections with 4′,6-diamidino-2-phenylindole and double-target in situ hybridization with a probe for histone H4 transcripts revealed that cdc2Os3 transcripts were abundant from the G2 to the M phase, but were less abundant or absent during the S phase. The levels of the Cdc2Os3 protein and its associated histone H1-kinase activity were reduced by treatment of cultured cells with hydroxyurea, which blocks cycling cells at the onset of the S phase. Our results suggest that domains other than the conserved amino acid sequence (the PSTAIRE motif) have important roles in the function of non-PSTAIRE CDKs in distinct cell-cycle phases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

FLORICAULA (FLO) of Antirrhinum and LEAFY (FLY) of Arabidopsis regulate the formation of floral meristems. To examine whether same mechanisms control floral development in distantly related species such as grasses, we isolated RFL, FLO-LFY homolog of rice, and examined its expression and function. Northern analysis showed that RFL is expressed predominantly in very young panicle but not in mature florets, mature leaves, or roots. In situ hybridization revealed that RFL RNA was expressed in epidermal cells in young leaves at vegetative growth stage. After the transition to reproductive stage, RFL RNA was detected in all layers of very young panicle including the apical meristem, but absent in the incipient primary branches. As development of branches proceeds, RFL RNA accumulation localized in the developing branches except for the apical meristems of the branches and secondary branch primordia. Expression pattern of RFL raised a possibility that, unlike FLO and LFY, RFL might be involved in panicle branching. Transgenic Arabidopsis plants constitutively expressing RFL from the cauliflower mosaic virus 35S promoter were produced to test whether 35S-RFL would cause similar phenotype as observed in 35S-LFY plants. In 35S-RFL plants, transformation of inflorescence meristem to floral meristem was rarely observed. Instead, development of cotyledons, rosette leaves, petals, and stamens was severely affected, demonstrating that RFL function is distinct from that of LFY. Our results suggest that mechanisms controlling floral development in rice might be diverged from that of Arabidopsis and Antirrhinum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since 1991, the Rice Genome Research Program in Japan has carried out rice genomics, such as large-scale cDNA analysis, construction of a fine-scale restriction fragment length polymorphism map, and physical mapping of the rice genome with yeast artificial chromosome clones. These studies have made a great impact on research into grass genomes and made rice a model plant for other cereal crop research. Starting in 1998, the Rice Genome Research Program will step into a new stage of genomics—that of genome sequencing. This project eventually should reveal all of the genomic sequence information in the rice plant and be an indispensable aid in understanding the genomics of other grass species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe in this study punchless, a nonpathogenic mutant from the rice blast fungus M. grisea, obtained by plasmid-mediated insertional mutagenesis. As do most fungal plant pathogens, M. grisea differentiates an infection structure specialized for host penetration called the appressorium. We show that punchless differentiates appressoria that fail to breach either the leaf epidermis or artificial membranes such as cellophane. Cytological analysis of punchless appressoria shows that they have a cellular structure, turgor, and glycogen content similar to those of wild type before penetration, but that they are unable to differentiate penetration pegs. The inactivated gene, PLS1, encodes a putative integral membrane protein of 225 aa (Pls1p). A functional Pls1p-green fluorescent protein fusion protein was detected only in appressoria and was localized in plasma membranes and vacuoles. Pls1p is structurally related to the tetraspanin family. In animals, these proteins are components of membrane signaling complexes controlling cell differentiation, motility, and adhesion. We conclude that PLS1 controls an appressorial function essential for the penetration of the fungus into host leaves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The promoter from rice tungro bacilliform badnavirus (RTBV) is expressed only in phloem tissues in transgenic rice plants. RF2a, a b-Zip protein from rice, is known to bind to the Box II cis element near the TATA box of the promoter. Here, we report that the full-length RTBV promoter and a truncated fragment E of the promoter, comprising nucleotides −164 to +45, result in phloem-specific expression of β-glucuronidase (GUS) reporter genes in transgenic tobacco plants. When a fusion gene comprising the cauliflower mosaic virus 35S promoter and RF2a cDNA was coexpressed with the GUS reporter genes, GUS activity was increased by 2–20-fold. The increase in GUS activity was positively correlated with the amount of RF2a, and the expression pattern of the RTBV promoter was altered from phloem-specific to constitutive. Constitutive expression of RF2a did not induce morphological changes in the transgenic plants. In contrast, constitutive overexpression of the b-ZIP domain of RF2a had a strong effect on the development of transgenic plants. These studies suggest that expression of the b-Zip domain can interfere with the function of homologues of RF2a that regulate development of tobacco plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been reported that carbonic anhydrase (CA) activity in plant leaves is decreased by Zn deficiency. We examined the effects of Zn deficiency on the activity of CA and on photosynthesis by leaves in rice plants (Oryza sativa L.). Zn deficiency increased the transfer resistance from the stomatal cavity to the site of CO2 fixation 2.3-fold and, consequently, the value of the transfer resistance relative to the total resistance in the CO2-assimilation process increased from 10% to 21%. This change led to a reduced CO2 concentration at the site of CO2 fixation, resulting in an increased gradient of CO2 between the stomatal cavity and this site. The present findings support the hypothesis that CA functions to facilitate the supply of CO2 from the stomatal cavity to the site of CO2 fixation. We also showed that the level of mRNA for CA decreased to 13% of the control level during Zn deficiency. This decrease resembled the decrease in CA activity, suggesting the possible involvement of the CA mRNA level in the regulation of CA activity.